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Student models are also used with 
outer-loop instructional policies
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Many predictive student models cannot be 
used with any existing instructional policy
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Contribution

Model agnostic instructional 
policy for the when-to-stop 
decision problem
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Background 
Bayesian Knowledge Tracing
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Background 
Performance Factors Model (PFM)

Logistic model for predicting 
student performance 

Features

• Student (i) 

• Skill (k) 

• # Correct responses for skill (s) 

• # Incorrect responses for skill (f)
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When-To-Stop Decision 
Problem

Situation: Teaching single skill with indistinguishable 
activities 

Observations: Correctness of student responses 

Decision: When to stop providing activities to student
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Prior Work 
Mastery Threshold Policy

Stop if we are confident that the student has 
mastered the skill
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Prior Work 
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Issues with the Mastery 
Threshold Policy

1. Requires student model with concept of mastery 

2. Will not stop if student cannot progress with given 
instruction (wheel-spinning)

11Beck, Joseph E., and Yue Gong. "Wheel-spinning: Students who fail to master 
a skill." Artificial Intelligence in Education. Springer Berlin Heidelberg, 2013.



New Policy 
Predictive Similarity Policy

Stop if we are confident that the student model’s 
prediction of the student’s performance will not 
change very much if the student is given another 
question
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Experiments 
Methodology

1. Train student models on data set 

2. Calculate expected amount of practice for each 
skill in dataset using instructional policy and 
student model 

3. Compare expected amount of practice per skill

14



Dataset  
KDD Cup Algebra I

> 3000 students 

505 skills 

BKT and PFM have 
similar predictive 
accuracy

15J. Stamper, A. Niculescu-Mizil, S. Ritter, G. Gordon, and K. Koedinger. Algebra 1 2008-2009. challenge data set from 
kdd cup 2010 educational data mining challenge. find it at http://pslcdatashop.web.cmu.edu/kddcup/downloads.jsp. 

http://pslcdatashop.web.cmu.edu/kddcup/downloads.jsp


Expected Amount of 
Practice (ExpOps)

Metric of the number of questions given to students 
by a policy with a given student model.

16J. I. Lee and E. Brunskill. The impact on individualizing student models on necessary practice opportunities. In EDM, 2012.



Expected Amount of 
Practice (ExpOps)

Metric of the number of questions given to students 
by a policy with a given student model.

Comparison, not a measure of quality

16J. I. Lee and E. Brunskill. The impact on individualizing student models on necessary practice opportunities. In EDM, 2012.



Experiment 1  
Predictive Similarity vs. Mastery Threshold

1. Train BKT with EM for each skill in dataset 

2. For each skill, calculate expected amount of 
practice using Predictive Similarity and Mastery 
Threshold policies with trained BKTs 

3. Compare expected amount of practice on skills 
with non-degenerate BKTs
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Experiment 1 
Results

Predictive similarity 
policy makes similar 
decisions to mastery 
threshold policy  
(coef 0.95)
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Experiment 2 
BKT vs. PFM

1. Train PFM on KDD Cup dataset using logistic 
regression 

2. Calculate expected amount of practice using 
Predictive Similarity policy with underlying BKT 
and PFM for each skill 

3. Compare expected amount of practice values
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PFM vs. BKT
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PFM vs. BKT
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PFM vs. BKT
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PFM vs. BKT

20

PFM based policy either:

• Stops immediately

• Longer than BKT 
based policy
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Diving In 
Comparing BKT and PFM by skill

Calculate student model predictions for skill if: 

• simulated student always responds correctly 

• simulated student always responds incorrectly 

21
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than BKT predictions
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Discussion / Summary

• Contribution: a model-agnostic when-to-stop 
instructional policy called predictive similarity 

• Predictive similarity policy acts like the  
mastery threshold policy when used with a BKT 

• Models with similar predictive accuracies may lead 
to very different instructional behavior
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Future Work
• Perform experiments on another dataset 

• Incorporating other observations into the predictive 
similarity policy 

• Expanding predictive similarity policy to longer 
horizons 

• Model agnostic instructional policies for more 
complicated instructional decisions (e.g. multiple skills) 

• Method for evaluating policies
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Questions?
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