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student learn more



Why does this work 
matter?
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Education Matters
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Issues in Education:

1. Access

2. Quality
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Solution: Intelligent 
Tutoring Systems (ITS)
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Predictive Student Models

Student models are also 
frequently used for predicting 
student performance
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Solution: Model Agnostic 
Instructional Policies

Instructional policies that 
can use any underlying 
predictive student model.
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Case 1: 

When-To-Stop Problem

When should the system 
stop providing problems for 
the given skill to the student?
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Background: 

Bayesian Knowledge Tracing (BKT)
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Background:

Performance Factors Model (PFM)

Logistic Regression Model for 
predicting student performance.


Features: 

• Student (i)


• Skill (k)


• # Correct responses for skill (s)


• # Incorrect responses for skill (f)

14
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Analysis--A New Alternative to Knowledge Tracing." Online Submission (2009).



Prior Work:

Mastery Threshold Policy

Stop if we are confident that the 
student has mastered the skill.
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Issues with the

Mastery Threshold Policy

1. Requires student model with 
concept of mastery.


2. Will not stop if student 
cannot progress with given 
instruction (wheel-spinning).

16Beck, Joseph E., and Yue Gong. "Wheel-spinning: Students who fail to master 
a skill." Artificial Intelligence in Education. Springer Berlin Heidelberg, 2013.



New Policy:

Predictive Similarity Policy
Stop if we are confident that our 
prediction of the student’s 
performance will not change 
much.
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Data: Algebra I

> 3000 students


505 skills
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How much does the underlying student 
model affect the Predictive Similarity 
Policy?
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Case 2: 

Skill-Choice Problem

Given T available 
questions, what skill should 
the next problem teach?
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Independent Skills

21

French 
Grammar

Fraction 
Addition

être
je suis
tu es

il / elle est
nous sommes
vous êtes

ils / elles sont

2
3 +

1
4 =

11
12



Dependent Skills
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1-Digit 
Addition

2-Digit 
Addition

4 + 3 = 7 46 + 17 = 63



Problem
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Pick the skill to 
maximize the final 
number mastered skills



What skill to teach?
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...
Skills

Correct / Incorrect

Maximization

Expectation

...
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Greedy 
Policy
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How does the Greedy policy 
compare to the Full Horizon Policy?
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How does the Greedy policy 
compare to the Full Horizon Policy?
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Looking ahead makes the 
student learn more
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Future Work
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• Multi-skill experiments with real 
data.


• Test more complicated skill 
hierarchies.


• Evaluating instructional policies.



Contributions this year
• Model agnostic when-to-stop policy.

• Windowed PFM for preventing extreme 

asymptotes.

• Hierarchical PFM for capturing skill 

hierarchies.

• Model agnostic skill-choice policies.

32



Questions?
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